New level information on Z=51 isotopes, $^{111}Sb_{60}$ and $^{134,135}Sb_{83,84}$

J. Shergur^{1,2,a}, N. Hoteling^{1,b}, A. Wöhr^{1,2,3}, W.B. Walters¹, O. Arndt⁴, B.A. Brown⁵, C.N. Davids², D.J. Dean⁶, K.-L. Kratz⁴, B. Pfeiffer⁴, D. Seweryniak², and the ISOLDE Collaboration⁷

¹ Department of Chemistry, University of Maryland, College Park, MD 20742, USA

² Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

³ Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA

⁴ Institut für Kernchemie, Universität Mainz, D-55128 Mainz, Germany

⁵ Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321, USA

⁶ Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA

⁷ ISOLDE, PH Department, CERN, 1211 Genève 23, Switzerland

Received: 4 November 2004 / Revised version: 3 March 2005 / Published online: 9 June 2005 – © Società Italiana di Fisica / Springer-Verlag 2005

Abstract. New data for low-spin low-energy levels in 111,134,135 Sb are presented. The observed structures are compared to shell-model calculations. The monopole shifts for the $d_{5/2}$ and $g_{7/2}$ single-proton levels and the spin-orbit splitting for the $d_{5/2}$ and $d_{3/2}$ orbitals as N/Z moves from ~ 1 up to 1.6 are discussed.

PACS. 23.40.-s β decay; double β decay; electron and muon capture – 21.10.-k Properties of nuclei; nuclear energy levels – 21.60.-n Nuclear structure models and methods

1 Introduction

The systematic changes in structures of the low-spin states below 2.0 MeV of odd-A Sb nuclides from ¹⁰¹Sb to ¹³⁵Sb provide important information regarding the monopole shift of the $g_{7/2}$ single-proton state between the N = 50and N = 82 closed neutron shells and beyond. Levels below 2.0 MeV arise from coupling the 2⁺ phonon of the Sn core to single-particle $g_{7/2}$ and $d_{5/2}$ states, and the presence or absence of degeneracy with the position of the 2⁺ core level is one indication of the extent of configuration mixing.

For odd-A Sb nuclei with $115 \leq A \leq 133$, the structures of states below 2.0 MeV have been established by a number of different experiments. Whereas, only a recent study of the structure of ¹⁰⁹Sb by Ressler *et al.* [1], has provided new data for low-spin levels below ¹¹³Sb. In this paper new data for levels in ¹¹¹Sb populated in the decay of ¹¹¹Te are presented.

Above the N = 82 shell closure, single-particle states have been identified in ¹³³Sb [2], and the $d_{5/2}$ singleparticle state has been identified in ¹³⁵Sb [3]. The positions of these single-particle levels are important for understanding the evolution of nuclear structure as N/Z exceeds 1.5 and the neutron dripline is approached. Also presented in this paper are new data for the low-spin states of both ^{134}Sb and ^{135}Sb .

2 Experimental

Low-spin states in ^{111,113,115}Sb were populated via β^+ /EC decay of ^{111,113,115}Te nuclei that were produced at Argonne National Laboratory using the ⁵⁸Ni(⁵⁶Fe,2pn)¹¹¹Te, ⁶⁰Ni(⁵⁶Fe,2pn)¹¹³Te, and ⁶²Ni(⁵⁶Fe,2pn)¹¹⁵Te fusion-evaporation reactions. Reaction products were separated in the Fragment Mass Analyzer on the basis of their mass to charge (A/Q) ratio, and following mass separation, the recoils were implanted in the tape of a moving tape collector (MTC). As the half-life of ¹¹¹Te ($T_{1/2} = 26.2(6)$ s) is shorter than nuclei produced from other reaction channels, the tape was moved periodically to a Pb-shielded counting station to maximize coincidence events; and to reduce contribution to the γ spectra from both the decays of daughter and granddaughter nuclides, and the decays of nuclides that are collected on the tape owing to similar A/Q values. Levels in ^{134,135}Sb were populated by β dn and β^-

Levels in ^{134,135}Sb were populated by β dn and β^- decay of ¹³⁵Sn, respectively. Neutron-rich Sn nuclei were produced at ISOLDE, CERN by using a 1.4 GeV proton beam pulse to induce fission of a UC₂ target. Sn isotopes were then selectively ionized using the Resonance Ionization Laser Ion Source which consists of three copper vapor

^a e-mail: shergur@phy.anl.gov

^b Conference presenter; e-mail: hoteling@wam.umd.edu

pumped dye lasers tuned to two resonant atomic excitations and a third to an energy which allowed for ioniztion of the electron into the continuum. Following mass separation, ¹³⁵Sn was implanted into the tape of a moving tape collector, data were collected, and the tape was moved to remove daughter, granddaughter, and isobaric nuclides prior to the next proton pulse. Data were collected with the "laser-on" and with the "laser-off" to distinguish which peaks in the γ spectra could be assigned to the decay of Sn, and which were a result of the decay of surface ionized ¹³⁵Cs. In both experiments, γ singles, γ -time, and γ - γ coincidences were collected.

3 Levels in proton-rich Sb nuclides

On the proton-rich side, eleven new states were identified in ¹¹¹Sb, including tentative assignments of the yrast $1/2^+$ and $3/2^+$ levels at 487 and 881 keV, respectively [4]. These data were combined with similar levels in 109 Sb [1] to improve the estimate for the positions of the $s_{1/2}$ and $d_{3/2}$ single-proton basis states in ¹⁰¹Sb that underlie nuclear structure calculations in this mass region. With the position of the $d_{3/2}$ level at 2.9 MeV, the spin-orbit splitting in ¹⁰¹Sb can be seen to be about twice the 1477 keV separation known for the $d_{5/2}$ to $d_{3/2}$ separation in ¹³³Sb, in agreement with the conjecture made by Schiffer et al. [5]. There are, of course, numerous other approaches to a full description of the spin-orbit splitting, however, we note that a further reduction of the $d_{5/2}$ to $d_{3/2}$ separation is found going from ¹³³Sb₈₂ to ²⁰⁷Tl₁₂₆ where that separation is reduced to > 1332 keV [6]. We include the "greater than" symbol to recognize that, although the $3/2^+$ level at 351 keV has a large spectroscopic factor, the $5/2^+$ level at 1653 keV does not contain all of the $d_{5/2}$ strength. Hence, the centroid of the spin-orbit splitting is surely larger than 1332 keV, perhaps even approaching the 1477 keV splitting observed in 133 Sb.

4 Levels in neutron-rich Sb nuclides

On the neutron-rich side, new level structures have been identified in $^{135}{\rm Sb}$ and $^{134}{\rm Sb}$ where the levels were populated following direct β^- and β -delayed neutron decays of ¹³⁵Sn, respectively. The observed levels in ¹³⁵Sb below 1.0 MeV are shown in fig. 1, along with the results of a shell model calculation using the CD Bonn interaction, where the single-proton $d_{5/2}$ and $d_{3/2}$ levels have been lowered by 300 keV as described previously, thereby holding the spin-orbit splitting the same as for 133 Sb [3]. As can be seen, the positions for the calculated levels are in good agreement with the positions of the observed levels. The new levels populated in β -delayed neutron decay in odd-odd ¹³⁴Sb below 1.5 MeV are also shown in fig. 1, along with the levels calculated in an OXBASH calculation using the KH5082 interaction. Levels in 134 Sb at 13, 330, and 383 keV were previously reported by Korgul et al. [7]. Again, an excellent fit is found, in spite of the fact that the KH5082 interaction for this mass region has been imported from the ²⁰⁸Pb region and scaled by $A^{-1/3}$.

Fig. 1. The β^- and β dn decays of ¹³⁵Sn. The structures of ¹³⁴Sb and ¹³⁵Sb are compared with shell model calculations with the parameters described in the text.

5 Conclusions

These new data have provided improved values for the monopole shifts of single-proton states from $^{109}Sb_{58}$ through $^{135}Sb_{85}$. For both light and heavy Sb nuclides, shell model calculations provide a good description of the observed structures. It should be noted that other approaches to monopole shifts in neutron-rich nuclides have recently been published by both Otsuka *et al.* [8], and by Hamamoto [9].

This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract W-31-109-ENG-38.

References

- 1. J.J. Ressler et al., Phys. Rev. C 66, 024308 (2002).
- 2. B. Fogelberg et al., Phys. Rev. Lett. 82, 1823 (1999).
- 3. J. Shergur *et al.*, Phys. Rev. C **65**, 034313 (2002).
- 4. J. Shergur et al., to be published in Phys. Rev. C (2005).
- 5. J.P. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004).
- W.B. Walters, Second International Workshop on Fission and Properties of Fission-Product Nuclides, Seyssins, Grenoble, France, AIP Conf. Proc. 447, 196 (1998).
- 7. A. Korgul et al., Eur. Phys. J. A 15, 181 (2002).
- 8. T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).
- 9. I. Hamamoto, Nucl. Phys. A **731**, 211 (2004).